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vcf?download=1) and PC (https://zenodo.org/record/7754136/files/PC_EMS_only.
vcf?download=1) VCF files. The promoter capture data, the reanalyzed exome 
capture data, and the SNP effects can be accessed through the USDA GrainGenes 
Genome Browsers by selecting the CS reference genome RefSeq v1.0 (https://wheat.
pw.usda.gov/GG3/genome_browser). Seeds for the VRN1 promoter Kronos mutants 
can be requested from the Germplasm Resources Unit at the John Innes Centre and 
from Dr. Dubcovsky Laboratory Tilling Distribution, https://dubcovskylab.ucdavis.
edu/wheat- tilling. Backups of the complete Kronos mutant population have been 
deposited in CIMMYT (Mexico), Shandong Agricultural University in China, the 
University of Saskatchewan in Canada, the quarantine repository in Australia, the 
Cereal Disease Laboratory (MN, USA), and Washington State University (WA, USA).
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